您现在的位置: 论文网 >> 理学论文 >> 理学其它论文 >> 氢能利用与高表面活性炭吸附储氢技术论文

氢能利用与高表面活性炭吸附储氢技术

作者:周理
出处:论文网
时间:2006-09-04
【摘要】氢能是指氢燃烧释放的能量。氢的燃烧有两种方式:热化学方式和电化学方式。尽管产物都是水,但因前者是在高温下释放能量,有可能伴随少量氮氧化物生成;后者是在常温下释放能量,产物只是水,因此是对环境没有任何污染的零排放(zero emission)过程。氢能的电化学释放过程是在氢燃料电池中完成的。以氢燃料电池驱动电动机的氢能汽车是真正的无污染的绿色汽车(ZEV)。就与环境的关系而言,任何其它“环境友好”汽车都不能与这种汽车相比美,因此都属于在不长时间内的过渡车型。我国倘能在氢能汽车上迎头赶上世界先进水平,不但可节省用于开发其它过渡车型的大量资金,而且对于加速提高国家的整体科学技术水平,都有重要意义。 
使用氢能的日子并不遥远

  氢能是指氢燃烧释放的能量。氢的燃烧有两种方式:热化学方式和电化学方式。尽管产物都是水,但因前者是在高温下释放能量,有可能伴随少量氮氧化物生成;后者是在常温下释放能量,产物只是水,因此是对环境没有任何污染的零排放(zero emission)过程。氢能的电化学释放过程是在氢燃料电池中完成的。以氢燃料电池驱动电动机的氢能汽车是真正的无污染的绿色汽车(ZEV)。就与环境的关系而言,任何其它“环境友好”汽车都不能与这种汽车相比美,因此都属于在不长时间内的过渡车型。我国倘能在氢能汽车上迎头赶上世界先进水平,不但可节省用于开发其它过渡车型的大量资金,而且对于加速提高国家的整体科学技术水平,都有重要意义。
  近几年,氢能汽车的样车在发达国家相继问世。之所以未在市场流通,是因为价格比市场流行汽车高出近1倍。但这个价格差距并不大,说明氢能汽车流通的日子并不遥远。氢能汽车的关键技术环节有2个:储氢与燃料电池。车用氢燃料电池技术在发达国家已臻成熟,我国的技术水平距离实用尚有差距。但氢气在车上的储存技术,即使是发达国家也还没有获得满意的解决。合金储氢技术,无论在单位合金重量的储氢容量方面,还是在吸放氢条件的温和程度方面,均不适于氢能的规模化储存与运输。早期的氢能汽车采用压缩储氢办法,在车上放置20~25MPa压力的氢力钢瓶,占用的空间和自重都是严重问题。近期的氢能汽车储存液氢。氢气液化成本很高,相当于消耗了1/3的液化氢气[1]。液氢温度约-250℃,蒸发损失也不小。目前的氢能汽车,储氢部分的成本约占总成本的一半。降低储氢成本,将使氢能汽车流通时间大大提前。
  除氢能汽车外,廉价的大规模氢能储运技术,将使氢能的广泛利用立即成为现实。在炼油、炼焦、氯硷、化肥等多种工业部门副产大量含氢气体,从中提取纯氢的技术也是成熟的,只是因为没有适宜的大规模储存与运输氢气的技术,副产的氢气没有被有效利用。我国每年如此烧掉或放空的氢气至少在1010标立米以上[2]。若在天然气中掺入15%的氢气,作为内燃机汽车燃料,则可解决天然气汽车的功率下降问题,并可使城市大气污染问题解决的难度大为降低。
  由此可见,如能提供方便、廉价的大规模储存与运输氢气的技术,则大量地使用氢能将近在明天。

吸附储氢技术崭露头角

  作为规模化的实用储氢技术,必须具备吸放氢条件温和、储氢容量大和成本低3个基本特征。金属合金储氢的机理是,首先打开联结两氢原子的化学键,然后氢原子与合金晶格中的金属原子形成氢化物键。放氢时,则需首先打开氢化物键,释放出氢原子,然后两个氢原子结合为氢分子。由于涉及到化学键的打开与形成,吸放氢条件难以“温和”。例如,镁基合金的吸放氢温度为300℃。与此相比,氢气在碳基材料上的物理吸附,是基于作用力弱得多的van de Waals力,没有联结原子的化学键的打开与生成过程,因此吸放氢条件必须温和,吸附热效应也相对较小。
  作为储氢容量指标,国际能源机构认为必须超过5wt%。除镁基合金外,其它储氢合金皆不能达到此容量。而碳基材料的储氢容量却不难超过这一指标。其中储氢容量最大的吸附材料是碳纳米管,已被证实的储氢容量是10wt%[1],但是批量生产碳纳米管的技术尚不成熟,其昂贵的价格使其不具备实际应用价值;可大规模生产的碳基储氢材料是超级活性炭和活性炭纤维。二者的储氢容量相近,但后者成本约低10倍。因此,在高比表面积的超级活性炭上吸附储氢,具有吸放氢条件温和、储氢容量较大、成本低的基本素质,展现出解决规模储氢问题的希望。

超级活性炭吸附储氢的基础数据

  在国家自然科学基金的支持下,笔者研究了超临界氢在高比表面积活性炭(亦称为超级活性炭)上的吸附特性,测定了77~298K温度范围和0~7MPa压力范围内的系列吸附等温线[3]。结果表明,在2~4MPa压力下吸附即达饱和,说明吸附储氢的压力不高;吸附量随温度的下降增长很快,说明吸附储氢适宜低温。最廉价的冷源便是液氮(<1 600元/吨)。下面将液氮温度(77K)下的吸附储氢量与压缩储氢量做一比较。
  图1中曲线1为根据298K不同压力下的氢气密度计算的压缩储氢量,氢气的压缩因子由三阶维里方程计算。曲线2为77K氢气在活性炭上的吸附等温线,表明在77K恒定温度下氢气吸附量随压力的变化。这里取活性炭的堆密度为500g/L。500克活性炭的最大氢气吸附量为26.7克,仅仅按氢气的吸附量计算,储氢容量已经达到5.3wt%,超过了国际能源机构确定的5wt%的标准。但是,在1升装满活性炭的容器空间中的实际储氢量不仅仅是吸附量,还有活性炭原子骨架外空间中的压缩储氢量,使得总的吸附储氢量大大超过吸附量。现以1升容器空间为基准,试算其中的压缩储氢量和总的吸附储氢量。1升容器中填弃500克活性炭。通常认为活性炭的“真密度”与石墨相同,即2.2g/cm3。则500克炭骨架占据的空间为500/2.2/1 000=0.227升,骨架周围的空隙体积为1-0.227=0.773升。根据77K氢气的压缩因子计算出77K氢气密度随压力的变化,进而计算出不同压力下在0.773升空隙体积中的压缩储氢量。将此值与曲线2出的吸附量相加,得到1升容器空间中储存的氢气总量,如图中曲线3所示。在吸附量达到最大点的4MPa压力下,1升容器空间的总储氢量为37克,重量基准的储氢容量达到7.4wt%。即使在2MPa压力下,储氢容量也有100×(30.3/500)=6.1wt%。

 [1] [2] 下一页

论文搜索
关键字:氢能 利用 高表面活性炭 吸附储氢 技术
最新理学其它论文
妊娠期肾巨大血管多发平滑肌脂肪瘤1例报告并
彩超用于微创保胆术治疗胆囊息肉术前诊断评
不同提取方法对羊尾油品质的影响
人类核工业的发展历程及前景
铅酸蓄电池工业清洁生产简述
伦理学视野中的终身教育
化工企业持续发展应重点研究的几个问题
中氮行业技术改造思路
略论西部大开发中石油和化学工业的发展
氯碱定价方法和价格走势分析
热门理学其它论文
浅谈数学的设计
数控技术与产业发展途径探讨
揉合一体的结构化学与生命科学 ——我看DNA
浅谈蛋白质折叠的有关问题
二三维一体化CAD系统中工程图纸自动生成技术
关于现代中学数学教育的思考
环肽的合成方法
气相光催化氧化降解卤代烃的研究
固相多肽合成树脂的特征和进展
教师的心理素质和职业适应