您现在的位置: 论文网 >> 理学论文 >> 物理学论文 >> 宇宙时空论论文

宇宙时空论

作者:李廷斌
出处:论文网
时间:2004-10-14


    以上现象表明对于超光速来说,只是一个极限能量或极限时空问题,黑洞的存在就说明了这一点。当物质本身的能量足够大时,使它达到时空的极限值,空间就由正变为负,时间也由负变为正,它就会以超光速运动了,或者是以超光速的方式存在。
    能量轴为光子静止时0的能量,是比微观粒子更为微小的物质结构,可以把质量为0的物质单元结构叫做虚子,比虚子还要微小的物质最基本的结构就是超光速量子--引力子。
    超光速的时间为正,同时拥有过去,现在,未来三维,它没有过去、现在、未来的区别,因此对于超光速来说时间是无限的;超光速的空间为负,具有负能量,空间为负的存在,说明它本身是没有大小概念的,这表明超光速的空间也是无限的。超光速的时间与空间都是无限的,它的时间即是空间,空间即是时间,时间与空间是没法划分的,它们完全融合在一起,不再有分别。超光速的时空完全融合,不分彼此,它的时空为一维,超光速就可以看作是一维时空的存在形式。
    组成现实世界最微小的物质结构是超光速,比它的空间范围小到无穷还是超光速。对于比可见宇宙的范围更为宏伟的现实宇宙来说,也是一维时空。可见,物质最基本的结构和宇宙的存在形式就是一维时空超光速。超光速的时空是无限的,其小无内,其大无外,宇宙中没有比超光速单元还要小,还要大的物质结构。超光速是时空的基本单位,为万物的本原。可以把物质最基本单元结构超光速量子叫做时空量子,简称时空子,时空子即是引力子。
    物质最基本的结构为时空子,一切物质都是由时空子构成的。时空子相互结合,它们结合的数目越多,能量也就越大,当时空子结合的数目增加到相当量级时,能量值就由负变为0,成为虚子。虚子的时间与空间的值都为0,是时空对等的存在方式。有了时间和空间共同存在的概念,能量轴就为二维时空的存在形式,它的时间与空间各为一维,已分化出来,不在融合。宇宙就由一维时空超光速创生出二维时空能量轴,即光速世界。一维时空与二维时空的空间能量为负和0,它们是以虚的方式存在,代表先天,是先天物质。由能量轴生成的以后物质已经有了物质概念,具有正的空间能量,为后天物质。
    在我们的任何实验中,无论何时,只要由能量形成物质,就有严格相同的反物质生成,它们总是共同产生,机会均等。反物质的寿命与质量与对应的物质相同,但其它一些符号相反,反物质对于我们世界来说,时间是倒流的。光子的反物质就是它本身。但在大于原子的尺度上,反物质丝毫不见踪影,宏观世界的一切物质都是由正物质构成的。虚子是构成一切宏观物质的单元,它的时间为0,而组成宏观世界物质的时间却总是向前流逝,所以也必须有同等数量的时间为反向流逝的反物质存在,组成反世界,它与正世界的时间相互抵消为0,才能和虚子的时间相符合,不违背质能守恒定律。正反物质相遇就成为能量,以光速运动,时间成为0,等同于虚子的时间,也正说明了这一点。由此可见,正反物质在宇宙中的存在是相等同的,它们相对于光速运动,被光速相隔开。
    虚子是由时空子构成的,它的时间为现在,但并不是说它只有"现在"这一维时间,按照质能守恒定律,它的时间也应为三维,可以说虚子的时间分别为:从过去向未来运动和从未来向过去运动两种方向,一种表现为顺时针方向,另一种表现为逆时针方向,它们的符号相反,顺逆时间也就相互抵消了,对外就不显现其性质,而表现为"现在",这和原子对外不显电性是一个道理。虚子相互之间组成了后天物质,处于顺时针方向的时间就形成了正物质,处于逆时针方向的时间就形成了反物质。正反物质的时间为互逆,把它们相互隔开的光速正好表现为现在,这就成为正的三维时间,形成了超光速的系统形式,与时空子的时间相符合。这时由虚子组成的物质只是微观上的物质,还没有形式宏观世界,微观物质不受光速的限制,如正反物质可以出现在对应的世界。从此有了物质概念,它的空间为两维,时间为一维。于是宇宙就由二维光速世界创生出三维微观世界。最后,微观上的正反物质再各自形成正反世界。宇宙就由三维微观世界形成了四维宏观世界,产生了万物。

上一页 [1] [2] [3] [4] [5] [6] 下一页

论文搜索
关键字:宇宙 时空 超光速 时间 空间
最新物理学论文
初中物理教学中教师有效理答的思路与方法
基于深度学习的初中物理实验教学思考
以项目学习法优化初中物理教学的策略研究
应用型高校课程思政的实施路径研究
试论物理学专业力学课程教学改革
量子力学课程思政教学改革的探讨
初中物理学科核心素养的内涵与培养策略探究
高中物理教学中学生创造性思维的培养分析
不同因素对动摩擦系数的影响探究
高中物理圆周运动问题解题方法研究
热门物理学论文
论惯性
物理学
宇宙时空论
物理学正论
惯性概念的认识及其影响
物理学理论研究
21世纪强磁场应用的展望
惯性力学与整体科学体系
物理学前沿问题探索
世纪之交谈物理学发展的方向