您现在的位置: 论文网 >> 理学论文 >> 物理学论文 >> 新形势下物理化学实验内容的设计与思考论文

新形势下物理化学实验内容的设计与思考

出处:论文网
时间:2015-12-08

新形势下物理化学实验内容的设计与思考

  一、目前物理化学实验面临的问题

  一直以来,复旦大学化学系有着重视化学实验教学改革的优良传统。20世纪70年代末,由复旦大学等14所学校合作编写的《物理化学实验》教材在国内广受好评,影响深远。20世纪90年代,复旦大学化学系对大学本科的化学课程体系进行了改革,逐步形成以创新能力培养为核心、以技术要素为主线的新实验教学体系及相应管理机制[1,2]。2000年前后,复旦化学系根据化学实验的特点,本着“统筹管理、优化资源、避免重复和遗漏”的原则,将涉及仪器操作类的基础实验课程“仪器分析实验”和“物理化学实验”融合为“仪器分析和物理化学实验”,那时实验教学中心在世行贷款和学校配套资金支持下,购置了一批在当时属于先进的仪器用于教学,使得化学实验条件得到大幅度改善,教学质量和水平因此得到保障和提高。

  随着时代和学科的发展,我系的物理化学实验教学逐渐暴露出一些不足。一方面大部分实验仪器设备相对落后,如电化学分析工作站、气相色谱仪、原子发射光谱仪等设备都已使用了10~15年。这些仪器性能不够稳定,测量出的实验数据误差大,得不到理想的实验结果,这样直接削弱了学生学习新知识的积极性。另一方面是实验内容更新速度慢,滞后于科学研究发展的步伐。物理化学学科的发展也使得一些原本属于专门化或综合实验内容的高级技术和仪器成为基础物理化学实验的常规技术和设备,在当前科研中发挥重要作用的常规表征手段至今没有相应的教学实验开设,而且复旦大学物理化学教学团队早在1999年就开设了以结构分析和表征为主线,集原理、仪器使用和解谱为一体的“谱学导论”理论课,导致理论教学与实验教学有较大的脱节。同时本系科研实力的快速提高、学科建设、师资优化和研究生生源的增长需求对本科学生的科研素质提出了新要求,一些操作简单、内容单薄的验证性实验显然不能满足这些要求。在这样的形势下,物理化学实验教学内容如何设置,成为我们面临的又一重要课题。经过多次调研和讨论,我们对物理化学实验教学内容设置有了一些初步实践与设想,希望能与国内同行共同探讨。

  二、物理化学实验教学内容的总体设计

  本课程内容的设置将充分依托本系学科优势,在“衔接前沿、兼顾基础”的原则下,更新、升级、完善和补充大型仪器类实验。同时在完成经典传承的基础上,加大综合性、设计性、研究性实验的比例,以求拓宽学生专业面、增强适应性。更希望通过本课程教学内容的实施和开展,让学生了解和掌握一定的前沿技术、技能以及思考、解决问题的方法,促进学生探索能力、科研创新能力的发展,提高学生的综合能力。

  在上述思想的指导下,我们经过对国内部分高校的物理化学实验教学内容进行调研和对比,并结合本系的实际情况,进行如下改革。

  1.更新仪器设备,推动传统实验内容的更新优化

  对目前开设的多个实验的老旧设备进行更新,取得了明显的效果。

  比如,差热分析实验是一个经典的研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化的热分析实验。本系原有的实验设备,是20世纪70年代老师们自己动手搭建的,从冰水浴、自制热偶、加热炉到记录笔、温控仪的连接,都需要学生动手完成,由于各配件年代久远,数据的重现性、分辨率都不理想,而且经常出现某一部件“罢工”的尴尬局面,导致实验无法顺利进行。近年来,热分析技术的不断创新与完善,使得热分析的应用领域不断拓展,研究对象不断增加,在无机、有机、化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域被广泛应用[3]。开展热分析类的教学实验,不仅具有课堂理论意义,也具有非常强的应用背景,国内许多高校开设热分析教学实验,但具体实施的方案各不相同。经过考察,我们购置了性能较好的热重天平,此仪器采用较先进自动化技术和精密的机械制造工艺,将机械结构、机电控制和气氛控制集于一体,一定程度上改善了传统热分析仪器笨重外形。性能优良的温度控制软件和界面,全面的热动力参数分析功能,将热重分析TG、微商热重法DTG与差热分析DTA结合为一体,在同一次测量中利用同一样品可同步得到热重、微商热重与差热数据。这样一来,实验简便快捷,而且数据可靠直观。为克服实验内容相对单薄的问题,我们重新设计实验方案,学生除了验证已知样品受热过程中的吸放热情况,还可以观测不同升温速率下吸放热情况的变化,进而研究样品受热过程中相应的动力学参数,例如根据不同升温速率下五水硫酸铜失水峰的峰顶温度与升温速率进行数学处理,便可以计算热分解的活化能。在问题与思考环节中,启发学生通过文献查阅,对热分析方法进行更全面的了解,有了这样的技术和知识储备,将来需要分析其他样品受热过程中物相变化、吸放热等问题时,很容易找到解决方案。

  此外,对气液色谱法测定非电解质溶液热力学函数的实验也更换了最新型号的气相色谱仪。所有的温度、压力、流量以及其他参数的设定和显示均可以在电脑软件界面上进行,大大方便了学生的实验操作,而且对了解目前的主流色谱有了感官认识。最为关键的是,数据重复性得到了极大的提高,以前需要重复进样近10次才能得到3次相对误差较小的数据,现在只需进样3次就可满足要求,对操作难度的要求大大降低,数据也与文献值吻合较好,得到了同学们的认可。

  涉及电化学测量的实验,目前全部采用电化学工作站进行。由于是软件界面控制,重现性较好,出现故障也很容易判断。这些改进与以前的电压、电流表显示相比,优势明显,而且对本科生继续从事电化学相关研究起到了较好的铺垫作用。

  2.增开研究性实验,加强对学生技术技能的培养

  调研发现,物理化学实验内容最欠缺的是科学研究领域中的前沿成果在教学中的体现,而学生能力培养上较欠缺的是现代表征仪器的操作技术。因此,与前沿研究相关的实验内容的设置,是我们此次实验教学内容更新的重点。   我们引入负载型催化剂的多相催化实验。随着催化技术的发展,由于多相催化剂具有易回收利用、产物易分离等特点,在石油化工等领域得到越来越广泛的应用。因此,让学生了解和掌握一定的多相催化技术和知识显得尤为重要,国内浙江大学和南京大学化学系的本科生物理化学实验中都涉及相关的实验内容。我们开设了负载贵金属催化剂液相催化苯甲醇氧化的实验,通过本实验,希望学生理解多相催化操作中的基本要求、评价活性优劣的基本方法、影响催化活性的外界因素、完成活性测试的定量分析手段等内容,再通过数据处理与分析,了解更多的与催化相关的动力学和热力学知识与技术。

  3.引入物质结构性质表征方面的实验内容

  现在科学研究中,物质结构及其性质的揭示,离不开大型仪器。自19世纪伦琴发现了X射线以来,X射线衍射被迅速地应用于物质结构表征,它可以用在研究体积很大的对象,譬如人体骨骼,还可以表征很小的物质结构,譬如蛋白质分子结构[4]。由于波长短,X射线有很强的穿透性,在分子及原子级的材料结构研究当中应用尤为广泛。现代X射线技术在研究未知结构和新材料中已经成为一个有力的工具,比如本系多个课题组制备的各种单晶新材料,其结构解析就离不开X射线单晶衍射仪。作为重要的物质结构表征手段,理论课堂上也做了深入的介绍,但由于硬件条件的限制,本系本科生一直没有机会动手操作X射线衍射仪。

  多孔固体材料最早发现于19世纪90年代,因其独特的结构特性而在催化、吸附、分离和储能等领域受到广泛的关注,表面状态和孔结构直接影响其性能,所以多孔固体材料的比表面积和孔径分布是研究固体材料的必要数据。本系多个课题组在介孔、微孔材料的制备研究中,一直离不开比表面积测试仪对样品基本性质的测定,也正因如此,本系多套比表面积测试仪均难以匀出机时用于本科教学。

  通过努力,现在我们购置了4台比表面积测试仪,并借用本系X射线粉末衍射仪科研机时,用于本科生的教学实验。先让学生通过不同方法制备铜锆复合氧化物材料,并对这些样品进行X射线粉末衍射和比表面积测定,最后通过数据处理,分析了解不同的制备因素对材料基本性质的影响,了解BET多分子层吸附理论的基本假设和BET法测量固体比表面的基本原理,掌握X射线粉末衍射方法的基本原理、技术和物理吸附仪的工作原理、使用方法,并借此掌握一定的材料常规表征实验技能技巧。

  三、未来设想

  近年来,随着世界环境问题的日益严重,光催化在环境污染物降解中已成为研究热点[5]。最近我们还将开设TiO2光催化废水降解实验,这个实验是有效治理环境污染技术的典型代表。纳米TiO2由于其化学性能稳定、抗菌性能好以及在有机物降解过程中无二次污染等优良性质,成为环境污染治理领域中的重要光催化剂,在光催化领域得到了广泛研究。TiO2的结构形貌对其光催化活性有很大的影响,通过本实验,希望学生了解环境污染与防治的相关知识,并能从结构形貌与光量子效率间的关系理解影响光催化活性的因素,同时理解光催化降解效率的衡量指标等知识和技能。

  从培养学生技术技能的角度看,现代物质基本结构表征方面涉及的内容还远不够,将来还计划开设铜锆复合氧化物或者负载贵金属样品表面的CO吸附红外光谱测定、核磁共振测定液相反应速率常数等相关内容。希望通过系列动力学活性测试以及相应物质结构表征方面实验的开展,让学生对功能材料样品制备技术、物质基本性质表征以及样品性质与性能之间的本质关联有所了解。更希望学生通过这一系列的训练,对科学研究过程有所了解,为他们开展系列校内科技创新项目打下基础,有利于他们今后的继续深造或工作。

  本课程还将引入量子化学计算实验内容。20世纪20年代,物理学家海森堡(W. K. Heisenberg)和薛定谔(E. Schrodinger)各自发表了物理学史上著名的测不准原理和薛定谔方程,标志着量子力学的诞生。1927年物理学家海特勒(W. Heitler)和伦敦(F. London)将量子力学处理原子结构的方法应用于氧分子[6],成功地解释了两个氧原子能够结合成一个稳定的氧分子的原因,标志着量子力学与化学的交叉学科――量子化学计算的诞生。随着计算机水平的不断提高以及计算模型与方法的不断改进,研究对象从小分子向较大分子发展,甚至到固体表面吸附、表面化学反应以及生物大分子等。目前量子化学理论计算方法逐渐被广泛应用于催化反应、纳米材料和药物制备等诸多领域。本系物理化学方向的研究中,量子化学计算的研究实力雄厚,不管是为拓展大学生的现有知识体系还是便于其进一步深造,都有必要让学生了解量子化学计算相关方面的知识。我们拟开展葡萄糖水解过程以及过渡反应中间体或过渡态的预测和金属铝表面氢气解离吸附等过程的模拟,希望通过这两个理论模拟实验的开展,让学生能了解基元反应动力学的主要内容和基本研究方法,并了解宏观反应和微观基元反应之间的统计联系等知识和技术。

  总之,我们认为物理化学实验教学不应该仅仅要求学生掌握某一个或几个物理量的测量原理和技术,而更应该注重培养他们掌握前沿知识和从事科学研究的能力。这就要求教学内容要不断创新和与时俱进,减少验证性实验,增加综合性、设计性及研究性实验。通过这类实验的开展,让学生熟悉认识问题、分析问题、解决问题的途径、方法和手段,注重数据处理的方法和实验报告的规范书写,注意培养学生查阅资料、综合解决实际问题的能力,并提高学生做实验的积极性和主动性,进而培养他们的进取心和创造力。

新形势下物理化学实验内容的设计与思考

论文搜索
关键字:物理化学 形势 物理 化学 实验 内容
最新物理学论文
应用型高校课程思政的实施路径研究
试论物理学专业力学课程教学改革
量子力学课程思政教学改革的探讨
初中物理学科核心素养的内涵与培养策略探究
高中物理教学中学生创造性思维的培养分析
不同因素对动摩擦系数的影响探究
高中物理圆周运动问题解题方法研究
浅谈物理核心素养下学生问题意识的培养策略
中学物理实验教学中存在的问题及改革
小组合作教学在中学物理教学中的成功开展
热门物理学论文
论惯性
物理学
物理学正论
宇宙时空论
惯性概念的认识及其影响
物理学理论研究
21世纪强磁场应用的展望
惯性力学与整体科学体系
物理学前沿问题探索
世纪之交谈物理学发展的方向